한국응용과학기술학회 논문 검색
.jpg)
Enhancement of Humidity Sensitivity by Adjusting Aspect Ratio of PVP-Modified Hexagonal ZnO Nanorods
간행물 정보 : Vol. 42 No. 1, 2025년,
파일형식 : pdf

1. C. Y. Lee, G. B. Lee, "Humidity sensors: A review," Sens. Lett., Vol. 3, No. 1, pp.
1-15, (2005). https://doi.org/10.1166/sl.2005.00110
2. Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. MacDiarmid,
Y. Wei, "Highly Sensitive and Stable Humidity Nanosensors Based on LiCl
Doped TiO2 Electrospun Nanofibers," J.Am. Chem. Soc., Vol. 130, No. 15, pp.
5036-5037, (2008). https://doi.org/10.1021/ja800176s
3. S. A. Rahman, S. A. Khan, S. Iqbal, M. M. Rehman, W. Y. Kim, "Eco-Friendly,
High-Performance Humidity Sensor Using Purple Sweet-Potato Peel for Multipurpose Applications," Chemosensors, Vol. 11, No. 8, p. 457, (2023). https://doi.org/10.3390/chemosensors11080457
4. M. Sajid, Z. J. Khattak, K. Rahman, G. Hassan, K. H. Choi, "Progress and future
of relative humidity sensors: a review from materials perspective," Bull. Mater. Sci.,
Vol. 45, No. 4, p. 238, (2022). https://doi.org/10.1007/s12034-022-02799-x
5. R. Demi̇r, S. Okur, M. Şeker, "Electrical Characterization of CdS Nanoparticles for Humidity Sensing Applications," Ind. Eng. Chem. Res., Vol. 51, No. 8, pp. 3309-
3313, (2012). https://doi.org/10.1021/ie201509a
6. E. T. Abdullah O. A. Ibrahim, "Capacitanceand Resistivity Measurements of
Polythiophene/Metallic Nanoparticles-based Humidity Sensors," Iraqi J. Sci., Vol. 62,
No. 4, p. 1158, (2021). https://doi.org/10.24996/ijs.2021.62.4.12
7. R. Akram, M. Yaseen, Z. Farooq, A. Rauf, Z. M. Almohaimeed, M. Ikram, Q.
Zafar, "Capacitive and Conductometric Type Dual-Mode Relative Humidity
Sensor Based on 5,10,15,20-Tetra Phenyl Porphyrinato Nickel (II) (TPPNi),"
Polymers, Vol. 13, No. 19, p. 3336, (2021).
https://doi.org/10.3390/polym13193336
8. Z. Chen C. Lu, "Humidity sensors: a review of materials and mechanisms," Sens.
Lett., Vol. 3, No. 4, p. 274, (2005). https://doi.org/10.1166/sl.2005.045
9. Z. Duan, Y. Jiang, H. Tai, "Recent advances in humidity sensors for human
body related humidity detection," J. Mater. Chem. C, 10.1039/D1TC04180K Vol. 9,
No. 42, pp. 14963-14980, (2021). https://doi.org/10.1039/D1TC04180K
10. C. Zhou, X. Zhang, N. Tang, Y. Fang, H. Zhang, X. Duan, "Rapid response
flexible humidity sensor for respiration monitoring using nano-confined strategy,"
Nanotechnology, Vol. 31, No. 12, p. 125302, (2020).
https://doi.org/10.1088/1361-6528/ab5cda
11. Y. Zilberman, R. Ionescu, X. Feng, K. Müllen, H. Haick, "Nanoarray of
polycyclic aromatic hydrocarbons and carbon nanotubes for accurate and
predictive detection in real-world environmental humidity," ACS Nano, Vol.
5, No. 8, pp. 6743-53, (2011). https://doi.org/10.1021/nn202314k
12. A. Cao, E. J. R. Sudhölter, L. C. P. M. De Smet, "Silicon Nanowire‐Based Devices for Gas-Phase Sensing," Sensors, Vol. 14, No. 1, pp. 245-27, (2012). https://doi.org/10.3390/s140100245
13. I. R. S. Vieira, A. A. da Silva, B. D. da Silva, L. T. Neto, L. Tessaro, C. R. G.
Furtado, A. M. F. de Sousa, N. M. F. Carvalho, C. A. Conte-Junior. "Ecofriendly
synthesis of ZnO nanomaterial from green tea extract: photocatalytic,
antibacterial and antioxidant potential," Biomass Convers. Biorefin., Vol. 14, No.
19, pp. 24317-24331, (2024). https://doi.org/10.1007/s13399-023-04456-7
14. X.-J. Xie, R.-J. Si, J. Zheng, K. Wei, X.-Y. Zheng, C. Chen, C.-C. Wang,
"Synthesis of ZnO/NiO hollow spheres and their humidity sensing performance," J.
Alloys Compd., Vol. 879, p. 160487, (2021).
https://doi.org/10.1016/j.jallcom.2021.160487
15. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M. S. Dresselhaus,
"Ultrahigh humidity sensitivity of graphene Vol. 42 No. 1 (2025) Enhancement of Humidity Sensitivity by Adjusting Aspect Ratio of PVP-Modified Hexagonal ZnO Nanorods 11oxide," Sci. Rep., Vol. 3, No. 1, p. 2714, (2013). https://doi.org/10.1038/srep02714
16. J. Wu, C. Yin, J. Zhou, H. Li, Y. Liu, Y. Shen, S. Garner, Y. Fu, H. Duan,
"Ultrathin Glass-Based Flexible, Transparent, and Ultrasensitive Surface
Acoustic Wave Humidity Sensor with ZnO Nanowires and Graphene Quantum Dots,"
ACS Appl. Mater. Interfaces, Vol. 12, No. 35, pp. 39817-39825, (2020).
https://doi.org/10.1038/srep02714
17. P. Li, S. Yu, H. Zhang, "Preparation and Performance Analysis of Ag/ZnO
Humidity Sensor," Sensors, Vol. 21, No. 3, p. 857, (2021).
https://doi.org/10.3390/s21030857
18. M. A. Dwiputra, F. Fadhila, C. Imawan, V. Fauzia, "The enhanced performance of capacitive-type humidity sensors based on ZnO nanorods/WS2 nanosheets heterostructure,"Sens. Actuators B Chem., Vol.
310, p. 127810, (2020). https://doi.org/10.1016/j.snb.2020.127810
19. Y. Tan, K. Yang, B. Wang, H. Li, L. Wang, C. Wang, "High-performance
textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO
nanorods array for wearable application," Nano Res., Vol. 14, No. 11, pp. 3969-
3976, (2021). https://doi.org/10.1007/s12274-021-3322-2
20. P. K. Aspoukeh, A. A. Barzinjy, S. M. Hamad, "Synthesis, properties and uses of ZnO nanorods: a mini review," Int. Nano
Lett., Vol. 12, No. 2, pp. 153-168, (2022).
https://doi.org/10.1007/s40089-021-00349-7
21. Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, L. Zheng, "High-Sensitivity Humidity
Sensor Based on a Single SnO2 Nanowire," J. Am. Chem. Soc., Vol. 129, No. 19, pp. 6070-6071, (2007). https://doi.org/10.1021/ja070788m
22. Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, "Zinc oxide nanorod and
nanowire for humidity sensor," Appl. Surf. Sci., Vol. 242, No. 1, pp. 212-217, (2005).https://doi.org/10.1016/j.apsusc.2004.08.013
23. R. Najjar, S. Nematdoust, "A resistive-type humidity sensor based on polypyrrole and ZnO nanoparticles: hybrid polymers vis-a-vis nanocomposites," RSC Adv., Vol. 6, No. 113, pp. 112129-112139, (2016).
https://doi.org/10.1039/C6RA24002J
24. K. Jlassi, S. Mallick, A. B. Ali, H. Mutahir, S. A. Salauddin, Z. Ahmad, L.
Tennouga, M. Chehimi, "Polyvinylpyridine –carbon dots composite-based novel
humidity sensor," Appl. Phy. A, Vol. 129, No. 10, p. 691, (2023).
https://doi.org/10.1007/s00339-023-06908-3
25. H. Parangusan, J. Bhadra, Z. Ahmad, S. Mallick, F. Touati, N. Al-Thani, "Humiditysensor based on poly(lactic acid)/PANI–ZnO composite electrospun fibers," RSC Adv., Vol. 11, No. 46, pp. 28735-28743, (2021). https://doi.org/10.1039/D1RA02842A
26. Z. Zhu, W.-D. Lin, Z.-Y. Lin, M.-H. Chuang, R.-J. Wu, M. Chavali,
"Conductive Polymer (Graphene/PPy)–BiPO4 Composite Applications in Humidity
Sensors," Polymers, Vol. 13, No. 12, p. 2013, (2021).
https://doi.org/10.3390/polym13122013
27. L. Kumari, U. Kumar, L. Sinha, O. Prasad, B. C. Yadav, M. Gupta, "Surface
modification and characterization of h-BN-doped PVP thin film and its
application as humidity sensor with theoretical DFT calculations," Chem. Pa.,
Vol. 75, No. 8, pp. 4055-4068, (2021).
https://doi.org/10.1007/s11696-021-01606-x
28. B. Ruqia, K. M. Nam, H. Lee, G. Lee, S.-I. Choi, "Facile synthesis of highly
crystalline ZnO nanorods with controlled aspect ratios and their optical properties,"
CrystEngComm, Vol. 19, No. 11, pp. 1454-1458, (2017).
https://doi.org/10.1039/C7CE00196G
29. S. Pokhrel, K. S. Nagaraja, "Electrical and humidity sensing properties of Chromium (III) oxide–tungsten(VI) oxide composites," 12 Syed Adil Sardar․Shahzad Iqbal․Bibi Ruqia․Woo Young Kim Journal of the Korean Applied Science and TechnologySens. Actuators B Chem., Vol. 92, No. 1, pp. 144-150, (2003). https://doi.org/10.1016/S0925-4005(03)00251-X
30. W.-P. Chen, Z.-G. Zhao, X.-W. Liu, Z.-X. Zhang, C.-G. Suo, "A Capacitive
Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs)," Sensors, Vol. 9, No. 9, pp. 7431-7444, (2009). https://doi.org/10.3390/s90907431
31. X. Chen, J. Zhang, Z. Wang, Q. Yan, S. Hui, "Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification," Sens. Actuators B Chem.,
Vol. 156, No. 2, p. 631-636, (2011). https://doi.org/10.1016/j.snb.2011.02.009
32. Y. Wang, S. Park, J. T. W. Yeow, A. Langner, F. Müller, "A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating,"
Sens. Actuators B Chem., Vol. 149, No. 1, pp. 136-142, (2010).
https://doi.org/10.1016/j.snb.2010.06.010
33. Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, "The sol–gel template
synthesis of porous TiO2 for a high performance humidity sensor," Nanotechnology,Vol. 22, No. 27, p. 275502, (2011). https://doi.org/10.1088/0957-4484/22/27/275502
34. M. Libber, N. Gariya, M. Kumar, "A comprehensive analysis of supercapacitors
with current limitations and emerging trends in research," J. Solid State
Electrochem., Vol. 29, pp. 513-527, (2024).
https://doi.org/10.1007/s10008-024-06107–x
35. X. Fei, J. Huang, W. Shi, "Humidity Sensor Composed of Laser-Induced
Graphene Electrode and Graphene Oxide for Monitoring Respiration and Skin
Moisture," Sensors, Vol. 23, No. 15, p. 6784, (2023).
https://doi.org/10.3390/s23156784