JOIN LOGIN MYPAGE

한국응용과학기술학회 논문 검색

Enhancement of Humidity Sensitivity by Adjusting Aspect Ratio of PVP-Modified Hexagonal ZnO Nanorods

간행물 정보 : Vol. 42 No. 1, 2025년,
파일형식 : pdf

14. 김우영_1.jpg

 

14. 김우영_2.jpg

 

14. 김우영_3.jpg

 

14. 김우영_4.jpg

 

14. 김우영_5.jpg

 

14. 김우영_6.jpg

 

14. 김우영_7.jpg

14. 김우영_8.jpg

 

14. 김우영_9.jpg

 

14. 김우영_10.jpg

 

14. 김우영_11.jpg

 

14. 김우영_12.jpg

1. C. Y. Lee, G. B. Lee, "Humidity sensors: A review," Sens. Lett., Vol. 3, No. 1, pp.

1-15, (2005). https://doi.org/10.1166/sl.2005.00110

2. Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A. G. MacDiarmid,

Y. Wei, "Highly Sensitive and Stable Humidity Nanosensors Based on LiCl

Doped TiO2 Electrospun Nanofibers," J.Am. Chem. Soc., Vol. 130, No. 15, pp.

5036-5037, (2008). https://doi.org/10.1021/ja800176s

3. S. A. Rahman, S. A. Khan, S. Iqbal, M. M. Rehman, W. Y. Kim, "Eco-Friendly,

High-Performance Humidity Sensor Using Purple Sweet-Potato Peel for Multipurpose Applications," Chemosensors, Vol. 11, No. 8, p. 457, (2023). https://doi.org/10.3390/chemosensors11080457

4. M. Sajid, Z. J. Khattak, K. Rahman, G. Hassan, K. H. Choi, "Progress and future

of relative humidity sensors: a review from materials perspective," Bull. Mater. Sci.,

Vol. 45, No. 4, p. 238, (2022). https://doi.org/10.1007/s12034-022-02799-x

5. R. Demi̇r, S. Okur, M. Şeker, "Electrical Characterization of CdS Nanoparticles for Humidity Sensing Applications," Ind. Eng. Chem. Res., Vol. 51, No. 8, pp. 3309-

3313, (2012). https://doi.org/10.1021/ie201509a

6. E. T. Abdullah O. A. Ibrahim, "Capacitanceand Resistivity Measurements of

Polythiophene/Metallic Nanoparticles-based Humidity Sensors," Iraqi J. Sci., Vol. 62,

No. 4, p. 1158, (2021). https://doi.org/10.24996/ijs.2021.62.4.12

7. R. Akram, M. Yaseen, Z. Farooq, A. Rauf, Z. M. Almohaimeed, M. Ikram, Q.

Zafar, "Capacitive and Conductometric Type Dual-Mode Relative Humidity

Sensor Based on 5,10,15,20-Tetra Phenyl Porphyrinato Nickel (II) (TPPNi),"

Polymers, Vol. 13, No. 19, p. 3336, (2021).

https://doi.org/10.3390/polym13193336

8. Z. Chen C. Lu, "Humidity sensors: a review of materials and mechanisms," Sens.

Lett., Vol. 3, No. 4, p. 274, (2005). https://doi.org/10.1166/sl.2005.045

9. Z. Duan, Y. Jiang, H. Tai, "Recent advances in humidity sensors for human

body related humidity detection," J. Mater. Chem. C, 10.1039/D1TC04180K Vol. 9,

No. 42, pp. 14963-14980, (2021). https://doi.org/10.1039/D1TC04180K

10. C. Zhou, X. Zhang, N. Tang, Y. Fang, H. Zhang, X. Duan, "Rapid response

flexible humidity sensor for respiration monitoring using nano-confined strategy,"

Nanotechnology, Vol. 31, No. 12, p. 125302, (2020).

https://doi.org/10.1088/1361-6528/ab5cda

11. Y. Zilberman, R. Ionescu, X. Feng, K. Müllen, H. Haick, "Nanoarray of

polycyclic aromatic hydrocarbons and carbon nanotubes for accurate and

predictive detection in real-world environmental humidity," ACS Nano, Vol.

5, No. 8, pp. 6743-53, (2011). https://doi.org/10.1021/nn202314k

12. A. Cao, E. J. R. Sudhölter, L. C. P. M. De Smet, "Silicon NanowireBased Devices for Gas-Phase Sensing," Sensors, Vol. 14, No. 1, pp. 245-27, (2012). https://doi.org/10.3390/s140100245

13. I. R. S. Vieira, A. A. da Silva, B. D. da Silva, L. T. Neto, L. Tessaro, C. R. G.

Furtado, A. M. F. de Sousa, N. M. F. Carvalho, C. A. Conte-Junior. "Ecofriendly

synthesis of ZnO nanomaterial from green tea extract: photocatalytic,

antibacterial and antioxidant potential," Biomass Convers. Biorefin., Vol. 14, No.

19, pp. 24317-24331, (2024). https://doi.org/10.1007/s13399-023-04456-7

14. X.-J. Xie, R.-J. Si, J. Zheng, K. Wei, X.-Y. Zheng, C. Chen, C.-C. Wang,

"Synthesis of ZnO/NiO hollow spheres and their humidity sensing performance," J.

Alloys Compd., Vol. 879, p. 160487, (2021).

https://doi.org/10.1016/j.jallcom.2021.160487

15. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M. S. Dresselhaus,

"Ultrahigh humidity sensitivity of graphene Vol. 42 No. 1 (2025) Enhancement of Humidity Sensitivity by Adjusting Aspect Ratio of PVP-Modified Hexagonal ZnO Nanorods 11oxide," Sci. Rep., Vol. 3, No. 1, p. 2714, (2013). https://doi.org/10.1038/srep02714

16. J. Wu, C. Yin, J. Zhou, H. Li, Y. Liu, Y. Shen, S. Garner, Y. Fu, H. Duan,

"Ultrathin Glass-Based Flexible, Transparent, and Ultrasensitive Surface

Acoustic Wave Humidity Sensor with ZnO Nanowires and Graphene Quantum Dots,"

ACS Appl. Mater. Interfaces, Vol. 12, No. 35, pp. 39817-39825, (2020).

https://doi.org/10.1038/srep02714

17. P. Li, S. Yu, H. Zhang, "Preparation and Performance Analysis of Ag/ZnO

Humidity Sensor," Sensors, Vol. 21, No. 3, p. 857, (2021).

https://doi.org/10.3390/s21030857

18. M. A. Dwiputra, F. Fadhila, C. Imawan, V. Fauzia, "The enhanced performance of capacitive-type humidity sensors based on ZnO nanorods/WS2 nanosheets heterostructure,"Sens. Actuators B Chem., Vol.

310, p. 127810, (2020). https://doi.org/10.1016/j.snb.2020.127810

19. Y. Tan, K. Yang, B. Wang, H. Li, L. Wang, C. Wang, "High-performance

textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO

nanorods array for wearable application," Nano Res., Vol. 14, No. 11, pp. 3969-

3976, (2021). https://doi.org/10.1007/s12274-021-3322-2

20. P. K. Aspoukeh, A. A. Barzinjy, S. M. Hamad, "Synthesis, properties and uses of ZnO nanorods: a mini review," Int. Nano

Lett., Vol. 12, No. 2, pp. 153-168, (2022).

https://doi.org/10.1007/s40089-021-00349-7

21. Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, L. Zheng, "High-Sensitivity Humidity

Sensor Based on a Single SnO2 Nanowire," J. Am. Chem. Soc., Vol. 129, No. 19, pp. 6070-6071, (2007). https://doi.org/10.1021/ja070788m

22. Y. Zhang, K. Yu, D. Jiang, Z. Zhu, H. Geng, L. Luo, "Zinc oxide nanorod and

nanowire for humidity sensor," Appl. Surf. Sci., Vol. 242, No. 1, pp. 212-217, (2005).https://doi.org/10.1016/j.apsusc.2004.08.013

23. R. Najjar, S. Nematdoust, "A resistive-type humidity sensor based on polypyrrole and ZnO nanoparticles: hybrid polymers vis-a-vis nanocomposites," RSC Adv., Vol. 6, No. 113, pp. 112129-112139, (2016).

https://doi.org/10.1039/C6RA24002J

24. K. Jlassi, S. Mallick, A. B. Ali, H. Mutahir, S. A. Salauddin, Z. Ahmad, L.

Tennouga, M. Chehimi, "Polyvinylpyridine carbon dots composite-based novel

humidity sensor," Appl. Phy. A, Vol. 129, No. 10, p. 691, (2023).

https://doi.org/10.1007/s00339-023-06908-3

25. H. Parangusan, J. Bhadra, Z. Ahmad, S. Mallick, F. Touati, N. Al-Thani, "Humiditysensor based on poly(lactic acid)/PANIZnO composite electrospun fibers," RSC Adv., Vol. 11, No. 46, pp. 28735-28743, (2021). https://doi.org/10.1039/D1RA02842A

26. Z. Zhu, W.-D. Lin, Z.-Y. Lin, M.-H. Chuang, R.-J. Wu, M. Chavali,

"Conductive Polymer (Graphene/PPy)BiPO4 Composite Applications in Humidity

Sensors," Polymers, Vol. 13, No. 12, p. 2013, (2021).

https://doi.org/10.3390/polym13122013

27. L. Kumari, U. Kumar, L. Sinha, O. Prasad, B. C. Yadav, M. Gupta, "Surface

modification and characterization of h-BN-doped PVP thin film and its

application as humidity sensor with theoretical DFT calculations," Chem. Pa.,

Vol. 75, No. 8, pp. 4055-4068, (2021).

https://doi.org/10.1007/s11696-021-01606-x

28. B. Ruqia, K. M. Nam, H. Lee, G. Lee, S.-I. Choi, "Facile synthesis of highly

crystalline ZnO nanorods with controlled aspect ratios and their optical properties,"

CrystEngComm, Vol. 19, No. 11, pp. 1454-1458, (2017).

https://doi.org/10.1039/C7CE00196G

29. S. Pokhrel, K. S. Nagaraja, "Electrical and humidity sensing properties of Chromium (III) oxidetungsten(VI) oxide composites," 12 Syed Adil SardarShahzad IqbalBibi RuqiaWoo Young Kim Journal of the Korean Applied Science and TechnologySens. Actuators B Chem., Vol. 92, No. 1, pp. 144-150, (2003). https://doi.org/10.1016/S0925-4005(03)00251-X

30. W.-P. Chen, Z.-G. Zhao, X.-W. Liu, Z.-X. Zhang, C.-G. Suo, "A Capacitive

Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs)," Sensors, Vol. 9, No. 9, pp. 7431-7444, (2009). https://doi.org/10.3390/s90907431

31. X. Chen, J. Zhang, Z. Wang, Q. Yan, S. Hui, "Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification," Sens. Actuators B Chem.,

Vol. 156, No. 2, p. 631-636, (2011). https://doi.org/10.1016/j.snb.2011.02.009

32. Y. Wang, S. Park, J. T. W. Yeow, A. Langner, F. Müller, "A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating,"

Sens. Actuators B Chem., Vol. 149, No. 1, pp. 136-142, (2010).

https://doi.org/10.1016/j.snb.2010.06.010

33. Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, "The solgel template

synthesis of porous TiO2 for a high performance humidity sensor," Nanotechnology,Vol. 22, No. 27, p. 275502, (2011). https://doi.org/10.1088/0957-4484/22/27/275502

34. M. Libber, N. Gariya, M. Kumar, "A comprehensive analysis of supercapacitors

with current limitations and emerging trends in research," J. Solid State

Electrochem., Vol. 29, pp. 513-527, (2024).

https://doi.org/10.1007/s10008-024-06107x

 

35. X. Fei, J. Huang, W. Shi, "Humidity Sensor Composed of Laser-Induced

Graphene Electrode and Graphene Oxide for Monitoring Respiration and Skin

Moisture," Sensors, Vol. 23, No. 15, p. 6784, (2023).

 

 

 

https://doi.org/10.3390/s23156784



리스트
TOP