Selenium첨가 고지방식이가 흰쥐의 혈청지질 성분에 미치는 영향

趙 垠 熙・曹 貞 淳

明知大學校 大學院 營養食品學科

Effect of Selenium Added High fat Diets on the Serum Lipid Components in Rats

Cho, Eun-Hee · Cho, Jung-Sun

Dept. of Food anol Nutrition, College of Science Myongli University

(Received May 2, 1989)

ABSTRACT

This paper in the feeding Selenium added high fat diet, have an aim to find an effect of the white rat'food intake, body weight and level of serum lipid. This experimentations come to the conclusion that Se. added high fat diets, to say again, soybean oil added high fat diets that expecially is contained unsaturated high fatty acid, improve a general diet-utility factor, and decrease a body weight and coronary heart desease factor of the serum have an effect to prevent them from C H D by increasing anti - arterioscleroticfactor.

Ⅰ. 서 론

Selenium(Se.)은 체내에 미량존재이지만 Cystine vitamin E와 함께 liver nerosis 를 막으며 Se.부족시 충치발생율이 높고 중독시는 머리카락이 빠지고 간에 cirrhosis가 나타난다 고 하였다. Robert 등은 치어메기의 성장은 Se.의 수준에 영향을 받으나체 중변화에는 영향을 미치지 않는다고 보고하였고 Irene, Beath, 등 등은 독성이 있는 Se.잔존과 재생산에 관해서 연구했는데 일정기간후에 기형적인 성장과 재생산력이 떨어진것은 Se.의 독성때문이라고 하였다.

Halpin⁶' David⁷' 등은 Se.이 혈장 glutathione peroxidase (GSH-Px)의 활성을 증가시킨다고 하였으며 vitamin E와 Se.이 함께 결핍된 식이에서는성장

억제, 빈혈, 근육병, 잠출성소질과 높은 치사율을 나타내고^{8,8)} 이의 예방에는 Se.과 5~20 ppm의 d-α-tocopheryl—acetate를 공급함으로써 막을수있음을 보이고 있다.

한편 고지방식이의 과잉섭취가 관상동맥성심장질환유발인자(Coronary Heart Diease: CHD)로 알려져왔는데 이중에서도 혈청 chol. 량은 가장 중요인자로 지적되고 섭취하는 양과 종류에 따라 영향을 받는 것이 보고¹⁰⁾되고 있다.

이상의 연구보고들을 기초로 해서 본 연구에서는 고 지방식이 투여와 Se.첨가고지방식이에 따르는 영양적 인 효과를 알고자 시도하였으며 이를 위하여 미량의 Se.을 첨가하여 흰쥐의 체중변화와 혈청성분에 미치 는 영향을 분석검토하였다.

Ⅱ. 재료 및 방법

1. 동물실험

1) 실험식이 조성

실험식이는 고형사료에 Soybean oil(제일제당), Shortening(서울식품공업)등의 유지와 Se.첨가 식이와의 비교를 위하여 Selenium을 첨가하였다. B, C 군은 Shortening을 20g, D, E군은 soybean oil을 20g씩 공급하였고 A, C, E 군에는 0.1mg의 Se.을 공급하였고 B, D군은 공급하지 않았다.

2) 실험동물

실험동물은 130~170 g의 Sprague Dawley계 흰 쥐(수컷) 36 마리를 사용하여 일주일간 흰쥐용 고형 사료(삼양유지)로 예비 사육한후 체중에 따라 6~7 마리씩 대조군(Control)과 실험군(A, B, C, D, E)으로 나누어 7주간 사육하였다.

실험실은 실온 20±3℃로 유지시키면서 1일1회 실험식이와 물을 ad libitum으로 급식시켰다. 체중 은 같은시간 같은요일에 측정하여 증가양을 산출하였 고 식이섭취량은 한군의 평균 식이섭취량으로 하였다.

3) 채혈 및 혈청분리

7주일 실험사육후에 15시간 절식시킨뒤 마취상태에서 경정맥(頸靜脈)을 절단하여 채혈한후 3,000 rpm에서 15분간 원심분리하여 상등액인 혈청을 취한다.

조직은 즉시 開腹하여 간장, 비장, 신장, 고환을 적출해내서 생리식염수에 씻은후 탈수시켜서 무게를 달았다.

2. 분석 실험방법

1) Total cholesterol 정량 Total chol. 측정용 Kit시약(영연화학)을 사용하 여 측정하였다.

시료 및 표준혈청 0.02ml 取하여 효소시약 3.0 ml 加하여 분광광도계(HITACHI Model 100~10) 로 500 nm에서 흡광도 측정을 하였다.

2) Free cholesterol, Ester cholesterol정량 Free chol. 측정용 Kit시약(Voaco Pure-chemical industrile LTd)을 사용하여 측정하였다.

시료 및 표준혈청 0.1 ml를 取하여 정색시약 3.0 ml를 加한뒤 잘 혼합하여 37℃의 상온층에서 15 분간 가온하여 505 nm에서 흡광도를 측정하였다.

혈청 Ester chol. 량은 Total chol. 량에서 Free chol. 량을 빼서 산출하였다.

3) HDL — cholesterol, LDL VLDL — cholesterol 량의 산출

HDL - chol. 측정용 시약(영연화학 Co. 「HDL-C₂ 영연」)을 사용하여 측정하였다.

시료 및 표준혈청 0.3 ml를 取하여 0.1 ml 의 침전 시액을 넣어 10 분간 방치후 3,000 rpm에서 15 분간 원심분리하여 상등액 0.1 ml를 取하여 효소시약 3.0 ml 와 혼합한 후 37℃의 상온층에서 15 분간 가온 하여 505 nm에서 흡광도를 측정하였다.

혈청 LDL, VLDL — chol.량은 Total chol.량에서 HDL — chol.량을 빼서 산출하였다.

4) 혈청 Triglyceride (TG), Phospholipid(PL) 량 측정

TG 측정용시약(영연화학) 사용하여 측정하였다.시료 및 표준혈청 0.02 ml 를 取하여 효소시약 3.0 ml 를 加하여 혼합한 후 36℃상은층에서 5분간 가온하고 5분간 방치한후 505 nm에서 흡광도를 측정하였다.

Phospholipid 측정에는 phospholipid 측정용시약 (영연화학 Co)사용하여 측정하였다. 시료 및 표준혈

Table 1. The composition of experimental diets given to each group male rats

Content						
	Control	Α	В	С	D	E
Basal Diet (g)	100	100	80	80	80	80
Shortening (g)		•	20	20		
Soybean oil (g)					20	20
Selenium (mg)		0.1		0.1		0.1

청 0.02 ml 를 取하여 효소시약 3.0 ml 를 加한뒤 37 ℃ 상온층에서 10 분간 가온후 10 분간 방치한뒤 500 nm에서 흡광도를 측정하였다.

5) 혈청 GOT, GPT량 정량

Reitman - Frankel 法에 기초한 혈청 Transaminase 측정용시약(아산제약)을 사용하였다.

기질액 1.0ml를 取하여 37℃에서 4분간 방치한 후 표준혈청 0.2 ml 加한후 37 ℃에서 60 분간 가온 시키고(GPT경우 30분간 가온) 정색시액 1.0ml取 하여 실온에서 20분 방치후 0.4N NaOH 10 ml 첨 가하고 10분간 방치한후 505 nm에서 흡광도를 측정 하였다.

6) Thin layer Chromatography (T. L. C)에 의 한 분석

혈청의 phospholipid를 분리하기 위한 방법11~13) 으로 시료에 ethanol : ether = 3:1(V/V)용액을 加하여 90℃ water bathe에서 ether를 날려보낸후 순수 serumlipid를 추출한 후 50 µl 를 TLC plate (Silicagel G60 (Merck))에 점적한후 chloroform -methanol -water = 80:25:3(V/V) 전개액에서 전개시킨후 10분간 자연건조 시킨후 Zinzadze reagent (fillter) water -glacial acetic acid = 1 :2:0.75 (V/V)에 발색시켜서 곧 densitometer 로 100 분율을 구한다.

- 7) 전기영동에 의한 분석
- (1) lipoprotein의 양

시료혈청을 agarose film(Corning Co)에 Spoting 하여 전개시킨후 Fad Red 78법으로 처리하여 dencitometer(Beckner Model 12~112)로 100분 율을 구한다.

(2) Serum protein의 양

시료혈청을 agarose film에 spoting 하여 Buffersol 전개용매로 35분간을 분리한후 ponceaus 표 준조작법으로 처리한후 100분율을 구한다.

(3) Lactate dehydrogehase (LDH)의 양

시료혈청을 agarose film에 spoting 하여 Buffersol 용매로 분리한후 발색시약으로 도말하여 자연 건조 시킨후 densitometer 에서 100 분율을 구한다.

3. 통계처리 방법

모든 실험성적14)은 Computer를 사용하여(평균치)

土 (표준편차)로 나타냈으며 유의성 검정은 student's t-test을 적용하였다.

Ⅲ. 결과 및 고찰

1. 식이섭취량과 체중변화

7 주간의 체중변화, 성장율 식이섭취량 식이효율은 Table 2와 같으며 성장곡선은 Fig. 1과 같다.

체중은 Shortening과 Se.첨가한 식이군인 C군이 198.9 g 으로 가장 높았고 Se.만을 첨가한 식이군인 A군이 가장 낮았다. 성장율을 보면 C D E Control〉B〉A군 순이다.

식이섭취량은 Se.만을 첨가한 A군이 18.99(g/day) 로 가장 높았고 Shortening에 Se.을 첨가하지 않은 군이 15.42(g/day) 로 가장 낮았다. 식이효율은 A 〉control〉D〉E〉B군의 순이다.

Thompson⁹⁾, Ewan¹⁵⁾ 등은 Se.부족시 성장장애와

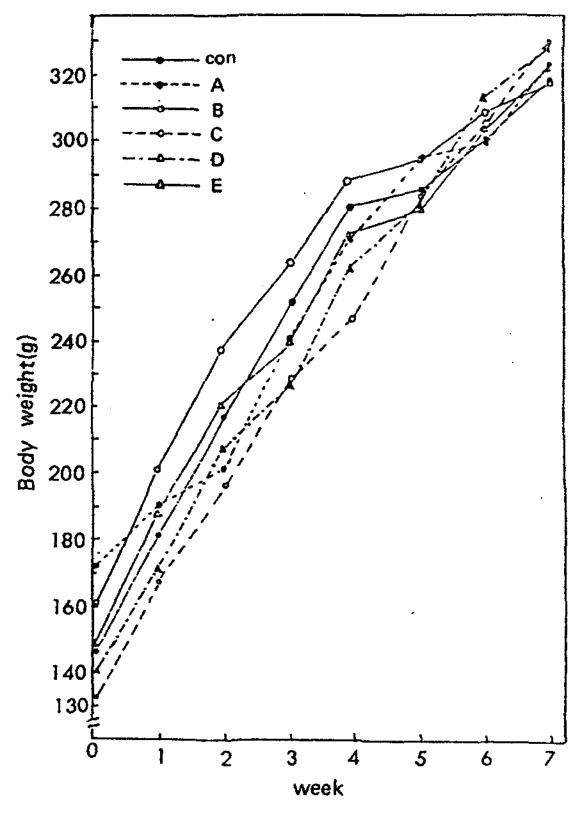


Fig. 1. The growth curves of male rats

4 趙垠熙・曹貞淳

높은 사망율, 성장 hormon의 감소가 일어난다고 하였으며 nitrogen이용율 감소등의 현상이 나타난다고하였고 Delbert⁶⁾, Kevin ⁶⁾ 등은 어류와 닭을 사용해서 Se.이 Glutathion Peroxidase의 구성요소임을 이용하여 실험한 결과 성장은 촉진되었으나 체중증가는 비례적으로 없었다고 보고하고 있다. 또한 Se이 과량으로 첨가된 식이에서는 오히려 성장이 떨어진 경향을 보였다고 하였다.

본 실험에서도 Se.첨가식이군의 체중증가에는 별차 이 없이 큰 효과가 없었다.

Miller 15, Elizabeth 16 등은 37.0%의 Shorting을 첨가한 식이와 저지방 식이군에 있어서의 체중증가는 실험마지막 주에 고지방 식이군이 월등이 컸다고 보고하였다.

본 실험에서도 shortening, soybean oil 식이군이 대소군보다 높게 나타났다.

식이섭취량에서는 Chang¹⁷⁾이 보고한 것과 같이식이의 energy 수준이 3.600 k cal /kg 이상 일때 식이섭취량은 energy 수준에 반비례 한다는 결과가 본실험에서도 일치하였다.

2. 장기 무게변화

7 주간의 실험식이 섭취한 쥐의 장기 무게는 Table 3과 같다.

간의 무게는 shortening 식이군이 대조군에 비해가장 낮았고 soybean oil 과 Se.만을 첨가한 식이군에서 3개의 fatty liver을 발견하였다. 고환에서는 shortening 과 Se.첨가 식이군이 2.92g으로 대조군에 비해 가장 낮았다.

3. 혈청성분 함량

1) 혈청 Cholesterol 함량

각 실험식이에 따른 혈청중의 Total chol.과 Free chol. Ester chol.과 Total chol.값에 대한 PL 값의 비의 결과는 Table 4와 같다.

Total chol.양은 Soybean oil, Se.첨가식이군이 대조군에 비해 높았으며 그외는 비슷하였고 Free chol. 양은 shortening식이군이 대조군에 비해 가장 낮게 나타났다.

철청중의 cholesterol 은 담즙염, steroid horm-

Table 2. Effect of experimental diet on male rats body weight, weight gain, food intake and food efficiency ratio.

Group Period	Control	Α	В	C	D	E
Initial (g)	147.8 ± 10.33b)	172.4 ± 1.82^{1}	$^{\circ}161.0\pm14.32^{1}$	$^{\circ}$ 133.6 \pm 4.04 $^{\circ}$	140.6± 3.21 ³	149.4± 4.83
1 Week	182.6 ± 15.68	191.0 ± 17.62^{3}	204.0 ± 16.73^{2}) 168.6 ± 14.29	171.4±15.68	188.4 ± 10.81^{3}
2 Week	218.0 ± 12.81	205.4 ± 27.08	238.1 ± 12.92	196.8±31.01	208.0 ± 14.83	221.6 ± 14.33
3 Week	253.4±21.35	240.6 ± 27.87	264.2 ± 18.39	229.0 ± 37.49^3	°228.6±13.09	240.2±41.32
4 Week	281.4±27.99	270.8 ± 27.99^3	°289.0±19.39	247.2 ± 46.20	263.0 ± 11.55^3	270.2 ± 39.35^{3}
5 Week	286.0 ± 20.74	296.1 ± 15.12	296.2 ± 19.29 ³	°285.0±26.92	282.1 ± 16.34	282.0 ± 40.86
6 Week	302.0 ± 16.43	308.1 ± 32.53	310.0 ±24.49	307.4±31.92	314.0±16.73	306.1 ± 32.11
7 Week	320.2 ± 14.32	326.1 ± 28.78^{3}	320.1 ± 32.53^{3}	332.5±35.60	330.1 ± 18.91^{8}	2326.1 ± 28.83
Finalinitial	172.4	153.7	159.1	198.9	189.5	176.7
Body weight gain (g/day)	4.10	3.66	3.79	4.74	4.51	4.21
Food Intake (g/day)	18.69	18.99	15.42	17.39	17.07	16.75
FER ^{a)}	0.22	0.19	0.25	0.27	0.26	0.25

a) FER = Food efficiency ratio = Body weight gain/Food intake

b) Mean±S.D.

¹⁾ Significantly different from control group. (P<0.001)

²⁾ Significantly different from control group.(P<0.02)

³⁾ Significantly different from control group (P<0.05)

on vitamin D등을 합성하는 물질이니 성장이 정지 되고 과다하게 섭취할 경우 동맥내에 침착되어 순환 계 질환의 원인16)이 된다.

포화지방산이 많은 유지는 혈중의 chol. 량을 증가 시키고 고도불포화 지방산을 함유한 유지는 chol.량 의 증가를 억제시킨다는 보고19 도 있다. 본 실험에 서도 shortening oil 식이군이 높게 나타나 위의 연 구와 일치하였다.

옥수수 기름속에 함유된 다량의 고도불포화 지방산 은 생물학적 활성이 큰 prostaglandin E의 전이물질 로써 체내의 여러 생리작용에 중요하며23-25) cholesterol, Triglyceride 함량을 저하시키므로 동맥경화 증 치료 및 예방효과가 있다고 하여 많이 권장되고 있는 실정^{23, 24, 26)}이다. 그러나 Poling²⁰⁾, 李²¹⁾ 등은 고도 불포화 지방산이라도 과잉섭취시는 독성을 가져

올수 있다고 했으므로 과잉을 피하고 적절한 양을 섭 취해야 할 것이다.

또 고도 불포화 지방산의 절대량보다는 P/S 비율 즉 식이지방 조성의 질적인 면을 아울러 개선함이 중 요하다고 사료된다.

이러한 결과들을 볼때 Se.첨가식이군과는 큰 효과 를 볼수없었으나 실험동물의 차이, 식이급여 기간, 고 도 불포화지방산의 종류에 따라서 달라지는 견해가있 으므로 이에관한 광범위한 연구가 기대된다.

2) HDL - cholesterol 함량 및 Triglyceride 와 phospholipid 함량

실험식이에 따른 HDL-chol. VLDL, LDL-chol. 함량과 전자에 대한 후자의 비율을 측정한 결과는 Table 5와 같으며 Triglycerid(TG)와 phospholipid (PL)함량은 Table 6과 같다.

Table 3. Effect of experimental diet on organ weight of male rats

(g)

Group	Liver	Kidney	Spleen-	Testicles
Control	12.09±0.77°	2.51 ± 0.33	1.37±0.25	3.35±0.13
Α	9.71 ± 1.20^{2}	2.67 \pm 0.1433	1.37 \pm 0.20 ³	3.25 ± 0.11^{33}
В	8.29 ± 0.95^{11}	2.14 ± 0.24	1.31 ± 0.09	3.08 ± 0.19^{31}
С	11.90 ± 1.38^{3}	2.01 ± 0.22	1.17±0.19	2.92 ± 0.43^{3}
D	9.80 ± 0.67^{2}	2.04 ± 0.20	1. 12 ± 0.09^{3}	3.19 ± 0.14
E	11. 17 ± 0.47	2. 27 ± 0.18^{3}	1.17 \pm 0.12	2.97 ± 0.17^{2}

- a) Mean±S.D.
 - 1) Significantly different from control group. (P<0.001)
 - 2) Significantly different from control group, (P<0.01)
 - 3) Significantly different from control group. (P<0.05)

Table 4. Effect of experimental diet on total cholesterol, free cholesterol and ester cholesterol in serum

(mg/dl)

C		Cholesterol				
Group —	Total	Free	Ester ^{a)}	Total chol P.L.		
Control	49.05±3.75b)	7.30±2.24	41.75±3.46	0.54 ± 0.04		
Α	45.44 ± 3.18^{2}	9. 44 ± 3.12^{2}	35.99 ± 1.56^{1}	0.57 ± 0.04^{2}		
В	44.75±1.052)	8.10 ± 1.39	36.65 ± 2.27^{2}	0.56 ± 0.06^{2}		
С	45.83 ± 4.53	12. 47 ± 2.11^{13}	33.36 ± 3.69^{10}	0.36 ± 0.02^{1}		
Ď	47.68 ± 4.78	6. 59 ± 2.26^{2}	41.09 ± 4.78	0.35 ± 0.04		
Ε	50.96 ± 5.04	9.89 ± 3.26	41.06 ± 3.92^{2}	0.47 ± 0.05^{2}		

- a) Ester cholesterol was calculated from the difference between Total cholesterol and Free cholesterol.
- b) Mean ± S.D.
 - 1) Significantly different from control group (p < 0.01)
 - 2) Significantly different from control group (p < 0.05)

Table 5. Effect of experimental diet on HDL-Cholesterol and VLDL, LDL-Cholesterol in serum of rats

(mg/di)

Group	HDL-cholesterol(A)	VLDL, LDL -cholesterol ^{a)} (B)	B/A
Control	38.39±2.55 ^b)	10.67±3.13	0.28±0.08
Α	28. 15±4. 48 ¹⁾	17. 19 ± 7.28^{2}	0.67 ± 0.40^{2}
В	31.85 ± 5.11^{2}	12.90 ± 4.64	0.43 ± 0.19
C	36.73±5.56	9.09 ± 1.55	0.26 ± 0.08^{2}
D	40.09 ± 6.72^{2}	7.58 ± 3.19^{2}	0.20 ± 0.13
E	47.49 ± 9.59	7.11±6.11	0.26 ± 0.17^{23}

- a) VLDL, LDL-Cholesterol was calculated from the difference between total cholesterol and HDL-cholesterol.
- b) Mean±\$.D.
 - 1) Significantly different from control group. (P<0.01)
 - 2) Significantly different from control group. (P<0.05)

Table 6. Effect of experimental diet on triglyceride and phospholipid in serum of rats

(mg/dl)

Group	Triglyceride	Phospholipid	TG/PL
Control	155.82±26.06°	91.51± 7.46	1.71 ± 0.30
Α	88.07 ± 14.62^{11}	79.69 ± 6.21^{3}	1.10 ± 0.13^{2}
В	85. 25 ± 17. 33 1)	80.87 \pm 10.50	1.05 ± 0.12
С	162.20 ± 7.61^{3}	126. 97 \pm 13. 221)	1.29 ± 0.11^{31}
D	71.84 ± 8.17^{2}	87. 57 ± 12.35^{33}	0.83 ± 0.10^{2}
E	94. 35 ± 22.02^{2}	109.86 \pm 20.43	0.86±0.151)

- a) Mean ± S.D.
 - 1) Significantly different from control group (p < 0.001)
 - 2) Significantly different from control group (p < 0.01)
 - 3) Significantly different from control group (p < 0.05)

혈청 HDL - chol. 농도는 관상동맥경화증 환자의 발생율과 관계가 큰 것으로 지적 27, 28) 되며 혈청 HDL - chol.의 감소와 LDL, VLDL - chol.의 농도가 높은 경우 사람에게는 바람직하지 않은 것으로 알려져 28) 왔다. Thompson 30), chait 31), shepherd 32) 등은 불포화지방산의 섭취가 HDL - chol.의 농도를 20%나 감소시켰다고 보고했는데 본 실험에서도 soybean oil 식이군이 shortening 식이군보다 HDL - chol. 농도는 높았고 LDL, VLDL - chol. 량은 낮게 나타나 위의 연구와 일치하였다.

현청 PL은 지질운반에 관여^{33,30}하는 지질로 지방 간의 원인이 된다고 한다.^{35,36)} 본 실험에서도 고지 방식이시 지방간 3개가^{37,38)} 발견되었는데 이는 간장 에서 지방이 축적되는 속도보다 PL의 합성이 못미 치는 것에 기인한 것이 아닌가 사료된다. 3) 혈청GOT와 GPT의 함량 실험식이에 따른 GOT, GPT 함량은 Table 7과

Table 7. Effect of experimental diet on GOT and GPT in serum of rats.

(Karmen)

Group	GOT	GPT
Control	45. 20 ± 5. 16 ^a	41.80± 8.64
Α	83.60 \pm 7.021	50.40 ± 16.01^{3}
В	69.20 ± 5.45	36.20 ± 3.85^{33}
С	112.50 ± 9.63^{11}	45.38 ± 2.53
D	72.00 ± 3.16	41.60 ± 4.41^{33}
Ε.	84.60 ± 17.21^{2}	41.40 ± 6.51^{3}

- a) Mean ± S.D.
 - 1) Significantly different from control group (p < 0.001)
 - 2) Significantly different from control group (p < 0.02)
 - 3) Significantly different from control group (p < 0.05)

Vol. 6. No. 1(1989)

같다.

GOT경우 shortening 과 Se.첨가식이군이 대단히 높게 나타났으며 GPT경우도 Se.첨가식이군이 가장 높았다.

혈청내의 GOT, GPT의 함량상승은 심근경색이나 급성 간장질환의 진단자료 (2)로 이용 (4,41)된다. 특히 간장조직내에는 GOT보다 GPT가 더 많이 함유되어 있으므로 GPT의 상승은 급성 간염질환의 임상적지표가 된다.

4) TLC를 이용한 phosholipid의 함량

각 실험식이에 따른 PL를 Thin layer Chromatography(TLC)를 이용하여 얻은 값은 Table 8과 같다.

분석결과는 LLe(Lysolecithin), Sph (Sphing-

omyelin), Le (Lecithin), Ce (Cephaline)의 순이며 많은 양의 순을 보며 Le〉Ce〉Sph〉LLe 순으로 거의 40%이상의 Lecithin으로 되어있다. Le 가 shortening 식이군에서, Ce 는 soybean oil 식이군에서 각각 높은 경향을 나타냈는데 이는³⁹⁾ 고도불포화 지방산이 LPL활성을 증가시켜 TG로부터 Le, Ce 의 생성을 돕는 것으로 사료된다.

5) 전기영동에 의한 분석결과

전기영동에 의한 lipoprotein(LP)함량과 serumprotein(SP) 함량, LDH함량은 Table 9, Table 10, Table 11과 같다.

Desai⁴³⁾ Goldstein⁴⁴⁾ 등이 식이중 고도불포화 지 방산을 높였을때 lipoprotein pattern에 미치는 영 향에 대해서도 수많은 보고가^{28,40)} 있다.

Table 8. The Effect of experimental diets on phospholipid component in serum of rats

(%)

Group	Phospholipid					
	Lle	Sph	Le	Се		
Control	12.62±2.45a)	14.84±3.33	45. 8 ± 8. 18	26.68±1.29		
Α	11. 40 ± 2.50^{2}	14.04 ± 2.56^{2}	44. 9 $\pm 2.62^{2}$	29.60 ± 4.05		
В	11.80 ± 0.92	13.46 \pm 6.43	47.8 ± 1.71	26.88 ± 9.61^{2}		
С	12.56 ± 5.01^{2}	12.72±2.36	40.8 \pm 1.97	33.88 ± 5.25		
D	9.04 ± 3.85	20. 18 ± 4.61^{2}	30. 7 ± 6.19^{2}	39.44 ± 9.71		
E	11.58 ± 1.55	15.54 ± 2.86	36.0 ± 1.97	36.84 ± 3.36^{1}		

- a) Mean±S.D.
 - 1) Significantly different from control group. (P<0.01)
 - 2) Significantly different from control group (p < 0.05)

Lle: Lysolecithin Sph: Sphingomyelin Le: Lecithin Ce; Cephaline

Table 9. The contents serum lipoprotein in male rats

(%)

Group	HDL	VLDL	LDL	HDL / LDL
Control	43.08±6.71a)	27.26±3.00	27.92±5.37	1.61±0.51
Α	52.24±1.59°	19.24 ± 4.74^{3}	28.74 ± 3.12^{4}	1.82 ± 0.204
В	52.30 ± 6.07	20.48 ± 1.17^{33}	26.83 ± 4.82	1.95 ± 0.40
С	52.94±4.94	22. 10 ± 3.79	26.54 ± 0.51	1.99 ± 0.204
D	43.44 ± 5.84	21.26 ± 2.53^{2}	33.94±3.164	1.30 ± 0.27
Ε	49.18±4.24	47.94 ±5.2111	27.06 ± 2.16	1.83 ± 0.284

- a) Mean±S.D.
 - 1) Significantly different from control group. (P<0.001)
 - 2) Significantly different from control group. (P<0.01)
 - 3) Significantly different from control group. (P<0.02)
 - 4) Significantly different from control group. (P<0.05)

Group

Control

Α

В

C

D

Ε

(%)

 12.86 ± 3.20 54.12 ± 0.85

Table 10. Effect of experimental diet on serum protein in male rats

. Effect of experie		um protein in me			(%)
Albumin(A)		Globul	in(B)		(A) /(B)
Albannin(A)	α_1	α_2	β	δ	(A)/(B)
50.04 ± 2.94a)	9.34±1.32	13.98±3.18	10.12±0.93	16.52±1.65	49.56±1.02
54.20±10.304)	5.72 ± 0.64^{3}	17.36±8.264)	8.38 ± 0.83^{3}	14.34 ± 2.38^{4}	46.70±1.14
54.42 ± 2.89	12.82±2.634)	11.04±1.294	9.92±0.404	11.80 ± 1.30^{2}	4,5.58 ± 1.19
50.14± 2.09	13.70 ± 1.11^{11}	9.68 ± 1.80	13.24 ± 1.72	13.24±1.174	48.06±1.01
46.14± 6.14	16.54 ± 0.85	12.84 ± 2.83	11.72±2.56	12.76±0.712)	52.86 ± 0.89

11.96 ± 2.07

- a) Mean±S.D.
 - 1) Significantly different from control group (p < 0.001)

 45.88 ± 7.014 15. 92 ± 3.36

2) Significantly different from control group (p < 0.01)

- 3) Significantly different from control group (p < 0.02)
- 4) Significantly different from control group (p < 0.05)

Table 11. Effect of experimental diet on serum LDH - isozyme of male rats

					(1-7
Group	LDH 1	LDH 2	LDH 3	LDH 4	LDH 5
Control	6.36±0.11ª	6.20±5.68	10.20±0.60	4.06±1.42	73.18± 9.09
Α	5.20 ± 2.08^{3}	5.71 ± 1.24^{3}	9.83 ± 1.11^{11}	11.86 ± 9.27^{3}	67.38 ± 17.81^{3}
В	4.48 ± 1.56^{2}	5.69 ± 3.10	9.29 ± 1.96^{2}	17.34 ± 3.58^{1}	63.20± 4.76 ¹⁾
Ċ	5.38 ± 0.59^{1}	5.48 ± 1.27	9. 14 ± 2.99^{2}	14.68±1.66	65.32 ± 28.89^{3}
D	3.98 ± 3.31	5.82 ± 2.40^{3}	10.14 \pm 4.12	10.00 ± 4.42^{3}	70.06 \pm 14.67
E	4.94 ± 0.78^{1}	5.70 ± 3.15	9.76 \pm 2.972)	9. 50 ± 2.62^{2}	70. 10 ± 11.57^{3}

13.36 \pm 2.46

- a) Mean±S.D.
 - 1) Significantly different from control group. (p<0.001)
 - Significantly different from control group. (P<0.01)
 - 3) Significantly different from control group. (P<0.05)

본 실험에서도 HDL농도가 soybean oil 군에서 높 게 나타나고 있어 불포화 지방산이 관상동맥경화증에 미치는 중요성을 보여주고 있다.

혈청 protein 함량에서는 질이 낮은 단백질식이를 섭취하거나 단백질함량이 적은 식이를 섭취했을때 지 방간의 형성과 혈청 protein의 농도 특히 Albumin함 량이 감소된다는 연구 60가 있는데 본 실험에서 대체 로 shortening군이 높고 soybean oil 군이 낮은 현 상을 보여 위의 연구와 일치하였고 또한 Albumin 에 대한 Globulin의 비를 보면 shortening 군이 A/G의 비를 증가시킨 것은 r-globulin의 감소경향 때문으 로 사료되며 soybean oil 식이군에서의 A/G 감소경 향은 α-globulin의 증가경향 때문인 것으로 생각된 다.

끝으로 LDH-isozyme 함량에서는 Se.첨가 식이 가 LDH-isozyme의 구성비에 약간의 영향을 47 미 쳤으나 심근경색이나 간질환 등에 영향을 미치는 정도 는 아니었다. 그리고 흰쥐의 LDH-isozyme 가운데 LDHs가 전체 60~70%를 차지했으나 이는 정상사 람인 경우에 LDH2가 29~30%로 가장 많은 것에 비 해 흰쥐와 사람간의 LDH-isozyme 은, 상당한 차이 가 있었다.

Ⅳ. 결 론

본 연구는 Se을 첨가한 고지방식이의 투여가 흰쥐 의 식이섭취량, 체중 혈청성분에 미치는 효과를 규명 하기 위하여 시도되었으며 다음과 같은 결론을 얻었다.

- 1. 체중증가율은 대조군에 비해 모든 실험군이 높 았고 Se.을 첨가한 식이군이 대체로 낮게 나타났다. 식이섭취량은 대조군보다 모든 실험군이 낮았다.
- 2. 혈청 Total chol. 량은 대조군에 비해 Se.첨가식 이가 모두 높았으며 Total chol., TG, HDL chol.양 은 soybean oil 식이군이 shortening 식이군보다 낮 았고 TG/PL의 양, Total chol./PL의 양은 shortening 식이군이 soybean oil 식이군보다 낮았다.
- 3. 혈청 GOT·GPT치는 GOT가 대조군보다 모 든 실험군이 높았고 GPT는 비슷하였다.
- 4. TLC로 분석한 결과 cephaline 는 대조군보다 모든 실험군이 높았고 Se.첨가와 Se.을 첨가하지 않 은 shortening 군이 비교적 높았다.
- 5. 혈청 Albumin은 대조군에 비해 낮았고 Globulin 은 높게 나타났다. Se.첨가식이군은 대조군보다 Albumin, Globulin이 비교적 낮았다.
- 6. 혈청 LDH-isozyme 은 모든 실험군이 LDH₅ 가 가장 높았고 Se.첨가에 관한 관계는 뚜렷하지 않 았다.

이상의 결과를 종합해 볼때 Se.을 첨가한 고도불포 화지방산인 soybean oil 군이 식이효율을 향상시켰 고 체중과 혈청내의 친동맥경화성인자를 감소시키고 항동맥경화성 인자를 증가시켜 CHD의 발생을 예방 하는 중요인자로 생각되어 진다.

문 헌

- 1. Klaus Schwarz and Arne Fredga; Biological potency of organic selenium compounds., J. Biol. Chem., 244(8), 2103-2110 (1969)
- 2. 李琦烈, 文秀才:基礎 營養學, 修學社, 213, 1985
- 3. Robert P. Wilson., Gatlin III. and Delbert M.,; Dietary Selenium requirement of fingering, channel catfish. J. Nutr., 114, 627-633 (1984)
- 4. Irene Rosenfeld, and Beath, O.A.,; Effect of Selenium on reproduction in rats. J. papper, **29**, 295-297, (1954)
- 5. Whanger P.D., Weswig P.H. and Oldfield J.E.,; Effects of Selenium and Vitamin E deficiencies

- on reproduction, growth, blood components, and tissue lesions in sheep fed purified diets. J. Nutr. 112, 1288-1297 (1977)
- 6. Halpin, Kevin M., and David H. Baker.; Selenium deficiency and trans sulfuration in the Chick. J. Nutr., 114, 606-612 (1984)
- 7. Mutanen, Marja J. and Mykkanen, H.A.; Effect of dietary fat on plasma glutathion peroxidase levels and intestinal absorption of Se. - labeled sodium selenite chick. J. Nutr., 114, 824-834 (1984)
- 8. Delbert M., Willam E, Poe. and Robert P. Wilson.; Effect of Singular and combined dietary deficienies of selenium and Vitamin E on fingering channel catfish. J. Nutr., 116, 1061-1067 (1986)
- 9. Thompson, J.N. and Scott, M.L.,; Role of Selenium in the nutrition of the Chick. J. Nutr., 97, 335-342, (1968)
- 10. Glueck, C.T. and Conner, W.E.; Diet Coronary heart disease relationships reconnitered. Am. Clin, Nutr., 31, 727-737 (1978)
- 11. Willam C. vogel, Willam M. Doizaki. and Leslie Zieve.: Rapid Thin Layer Chromatographic separation of Phospholipids and neutral lipid of serum. Notes on Metrodology. 131-140 (1961)
- 12. Tom R. Watkins.; Effect of Humidity on TLC. of phospholipids. Chapter 13, 175-185.
- 13. Skipski, V.P., Peterson, R.F. and Marion Barclay.; Quantiative analysis of phospholipids by Thin. Layer Chrpmatography. J. Biochem., 90, 374-379, (1964)
- 14. 金宇哲外:現代統計學, 140~161, 英志文化社, Seoul. 1985
- 15. Miller, W.C., Bryce, G.R. and Conolee, R.K.; Adaptations to a high fat diet that increase exercise endurance in male rats. J. Appl. Physiol. **56**(1), 78-83 (1984)
- 16. Elzabth A., Darid E., Applegate, Upton and Sudith S. Stern.; Exercise and Food intake adioposity and lipoproteins in osborne mendel rats made obses by high fat diet. J. Nutr., 114, 447-459 (1984)
- 17. Chang, Y.K.; Effect of dietary protein and energy on the growth and body composition of growing

- rat. Athesis of ph. D. Unpublished Graduated school Seoul National University.
- 18. Park, Hyun suh and Chol, Kyung Hee., Effect of dietary polyunsaturated fat on HDL-Cholesterol, total cholesterol and Triglyceride in Plasma and tissues of adult rats. Korean J. Nutr., 15(1), 47-53 (1982)
- 19. 鈴木道子, 野崎幸久:高脂血症に關する臨床的ね ウぴに實驗的 研究, 榮養と食糧, **30**(2), 105~ 111, 1977
- Poling, C.E., Warner, W.D., one, P.E., and Rice, E.E.; The nutritional value of fats. after use in commercial deep fat frying. J. Nutr., 72, 109-120 (1960)
- 21 李良子:油脂食品의 營養學的 의의 Korean. J. Nutr. 11(2):6~23, 1978
- 22. Steinberg, D., Vaughan, M., Nestel, P.J. and Bergstrom, S.; Effect of prostaglandin E opposing those of catecholamines on blood pressure and on triglyceride breakdown in adiopose tissue. *Biochem. Pharamacol.* 12, 764-766 (1963)
- 23. Pawar, S.S. and Tidwell, H.E.; Effect of prostaglandin and dietary fats on lipolysis and esterification in rat adipose tissue in virto. *Biochem*, *Biophys. Acta.* 164, 167-171 (1968)
- 24. 李琦烈, 安洪錫, 李良子: 動脈硬化症과 관련된代謝障碍의 豫防 및 治療食餌, 脂肝(p/s 比率)을 中心으로 Korean. J. Nutr 12:9~11, 1979
- 25. Thomasson, H.J.; Prostaglandins and cardio vascular disease. Nutr. Rev. 28, 67-69 (1969)
- 26. Y.C. Lee, T.K. Kwak, K.Y. Lee; Relationship between vitamin E and polyunsaturated fat. Korean J. Nutr., 9, 283-285 (1976)
- 27. Beng, A. Borressen, and G. Dablem.; Serum highdensithy lipoprotein and atherosclerotic heart disease, Lancet. I. 499-501 (1976)
- 28. Hojermann, L. Enger, S.C., Helgeland, A., Holme, I., Leren, P., Trygg, K.: The effect of dietary changes in high densit lipoprotein cholesterol. The oslo study. Am. J. Med., 66, 105-109, (1977)
- 29. Lipid Research Clinics Program; The lipid re-

- search clinics Coronary primary prevention trial results, The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. J. Am. med Assoc. 251, 365-374 (1984)
- 30. Thompson, G.R., Segura, R., Hoff, H. and Go. o, A.M.; Contrasting effect on plasma lipoproteins of intravenous versus oral administration of triglyceride phospholipid emulsion Eur. J. Clin. Invest., 5, 373-378 (1975)
- 31. Chait A., Onitiri, A. Wicoll, A., Rabaya, E, Davis., J. and Lewis, B.; Reduction of serum tri 1 cerid levels by polyunsaturated fat, Studies on the mode of acition and an very law density lipoprotein composition. Atherosclerosis., 20, 347-364 (1974)
- 32. Sheherd, J., Packard, C.J., Palsch. J.R. Gotto, A.M. and Taunton, O.D.,; Effect of dietary polyunsaturated and saturated fat on the protein of high density lipoprotein and metabolism of apolipoprotein A I. J. Clin. Invest 6, 1582-1592 (1978)
- 33. F.D. Collins, Studies on Phospholipids. *Bio. chem. J.*, 72; 281-287 (1959)
- 34. Rhodes, D.N. and Lea, C.H.: Phospholipids. (on the composition of Hen's egg phospholipids) *Biochem. J.* 65, 526-533 (1957)
- 35. Brown, M.S. and Foldstein, J.L.,; Disorders of lipid metabolism harrison's principle of Internal Medicine 9th ed. G.A. Thorn ed. New York McGraw-Hill., 507-530 (1977)
- 36. Sinclair, A.J. and Collins, F.D.; Fatty livers in rats deficient in essential fatty acids. *Biochem. Biophys. Acta.* 152, 498-510 (1968)
- 37. Marjorie G. Macfarlane,; Cardiolipin and other phospholipid in Ox liver. *Biochem. J.* 78; 44-51 (1961)
- 38. Mckibbin, J.M.; A monophosphoinositide of liver. J. Biol. Chem. 220, 537-545 (1956)
- 39. Donald J. Hanahan, John C. Dittmer, and Emily Warashina,; A column chromatographic separation of classes of phospholipides. J. Biol. Chem. 228, 685-700 (1957)
- 40. Anonymus, Experimental nutritional dystrophy and isozymes. Nur. Rev., 24, 337 (1966)

- 41. Simic, Mitchel G. and Marus Karel,; Autoxidation in food biological systems. Plenum Publishing Co., 233. Spring street, New-York, 11, 185-190 (1980)
- 42. Walter, E.D. and Jonsen, L.S.: Serum GOT levels muscular Dystrophy and cert in hematological measurements in chicks and poults as influenceed by Vitamin E Selenium and methionine. *Poultry Sci.*, 43, 919-926 (1964)
- 43. Desai, L.D. and Lee, M.; Plasma vitamin E cholesterol relationship in western canadian Indians. Am. J. Clin. Nutr., 27, 334 (1974)

- 44. Goldstein, J.L.; Defective lipoprotein receptors and Altherosclerosis. N. Engl. J. Med. 309, 288 (1983)
- 45. Stange, E., Agostin, B. and Papenberg, J.; Changes in rabbit lipoprotein properties by deitary cholesterol and saturated and polyunsaturated fats Atherosclerosis, 22, 125-148 (1975)
- 46. 朱軫淳:蛋白質의 生理學的 營養學的 기능, Korean. J. Nutr. 7:1~5, 1974
- 47. Latshaw, J.D.; Natural and Selenite Selenium in the hen and egg. J. Nutr., 105, 32-37 (1975)